Short Proofs of Summation and Transformation Formulas for Basic Hypergeometric Series
نویسندگان
چکیده
We show that several terminating summation and transformation formulas for basic hypergeometric series can be proved in a straigntforward way. Along the same line, new finite forms of Jacobi’s triple product identity and Watson’s quintuple product identity are also proved.
منابع مشابه
Transformation formulas for multivariable basic hypergeometric series
Abstract. We study multivariable (bilateral) basic hypergeometric series associated with (type A) Macdonald polynomials. We derive several transformation and summation properties for such series, including analogues of Heine’s 2φ1 transformation, the q-Pfaff-Kummer and Euler transformations, the q-Saalschütz summation formula, and Sear’s transformation for terminating, balanced 4φ3 series. For ...
متن کاملElliptic Hypergeometric Series on Root Systems
We derive a number of summation and transformation formulas for elliptic hypergeometric series on the root systems An, Cn and Dn. In the special cases of classical and q-series, our approach leads to new elementary proofs of the corresponding identities.
متن کاملNonterminating Basic Hypergeometric Series and the q-Zeilberger Algorithm
We present a systematic method for proving nonterminating basic hypergeometric identities. Assume that k is the summation index. By setting a parameter x to xqn, we may find a recurrence relation of the summation by using the q-Zeilberger algorithm. This method applies to almost all nonterminating basic hypergeometric summation formulas in the book of Gasper and Rahman. Furthermore, by comparin...
متن کاملTaylor Series for the Askey-wilson Operator and Classical Summation Formulas
Abstract. An analog of Taylor’s formula, which arises by substituting the classical derivative by a divided difference operator of Askey-Wilson type, is developed here. As an application, a generalization of the binomial theorem is obtained. Besides, this method becomes quite useful to obtain summation formulas of basic hypergeometric series. New proofs of several well-known summation formulas ...
متن کاملSemi-Finite Forms of Bilateral Basic Hypergeometric Series
Abstract. We show that several classical bilateral summation and transformation formulas have semi-finite forms. We obtain these semi-finite forms from unilateral summation and transformation formulas. Our method can be applied to derive Ramanujan’s 1ψ1 summation, Bailey’s 2ψ2 transformations, and Bailey’s 6ψ6 summation. Corresponding Author: William Y. C. Chen, Email: [email protected] AMS Cl...
متن کامل